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ABSTRACT

We consider the approximation of optimal discrete-time linear quadratic Gaussian (LQG)
compensators for distributed parameter control systems with boundary input and unbounded
measurement. Our approach applies to a wide range of problems that can be formulated in a state
space on which both the discrete-time input and output operators are continuous. Approximating
compensators are obtained via application of the LQG theory and associated approximation results
for infinite dimensional discrete-time control systems with bounded input and output. Numerical
results for spline and modal based approximation schemes used to compute optimal compensators
for a one dimensional heat equation with either Neumann or Dirichlet boundary control and

pointwise measurement of temperature are presented and discussed.
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1. Introduction

In this paper we develop an approximation theory for the computation of optimal discrete-time
linear quadratic Gaussian (LQG) compensators (combined feedback control law and state estimator)
for distributed parameter systems with boundary input or control and unbounded output or
measurement. In a continuous time setting, boundary input typically results in an unbounded input
operator. That is, the system's input operator maps the control input into a space larger than the
state space in which the open-loop system is usually formulated. In the discrete-time case, on the
other hand, for a wide class of distributed systems, the resulting input operator is bounded on the
usual underlying state space. By unbounded output or measurement is meant that the system
output operator has domain in a space smaller than the usual open-loop state space.

For continuous time systems, Pritchard and Salamon (1987) have established an abstract
semigroup theoretic framework for treating the linear quadratic regulator problem (control only) for
infinite dimensional systems with unbounded input and output operators. Their approach is based
upon a weak or distributional formulation of the Riccati equations which characterize the optimal
feedback control laws in an appropriate dual space . Curtain (1984) provides a procedure for the
design of finite dimensional compensators for parabolic systems with unbounded control and
observation. In (Curtain and Salamon, 1986) a finite dimensional compensator design procedure
for a wider class of infinite dimensional systems with unbounded input (but bounded output)
including hereditary systems with control delays and partial differential systems with boundary
control is developed. Lasiecka and Triggiani have 160ked at linear regulator problems for parabolic
(1983a, 1987a) and hyperbolic (1983b, 1986) systems with boundary control and obtained,
among other things, global and local regularity results for the optimal controls and state
trajectories. In (Lasiecka and Traggiani, 1987b) Galerkin approximations and an associated
convergence theory for closed-loop solutions to regulator problems for parabolic systems with
Dirichlet boundary input are studied. A more complete survey of the boundary control literature
including references to some of the poineering work in this area can be found in (Pritchard and

Salamon, 1987).




In our treatment here, we consider the discrete-time problem (i.e. piecewise constant input and
sampled output). Our interest in the discrete-time or digital formulation is motivated by 1) the fact
that it represents a more accurate or realistic description of how the linear-quadratic theory for
distributed systems would actually be applied in practice, and by 2) how the boundedness of the
discrete-time input operator in the usual underlying state space facilitates the development of an
approximation theory which can simultaneously handle both unbounded input and unbounded
output. Our approach is based upon an application of the theory we developed earlier in (Gibson
and Rosen, 1985 and 1986) for the approximation of optimal discrete-time LQG compensators for
infinite dimensional systems with bounded input and output. Our results are applicable to a rather
wide class of boundary control systems in which a restriction of the state transition operator and the
discrete-time input operator are bounded on a space on which the output operator is bounded as
well.

An outline of the remainder of the paper is as follows. In Section 2 we describe an abstract
framework for the study of boundary control systems and their discrete-time formulation. In
Section 3 we review the LQG theory for infinite dimensional discrete-time systems and associated
abstract approximation results. In the fourth section, we illustrate the application of our technique
on an example involving the spline and modal subspace based approximation of optimal
compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary

control and pointwise measurement of temperature. Section 5 contains some concluding remarks.

2. The B fary C L Syst 1 its Di -Time F lati
We employ a semigroup theoretic formulation for a class of abstract boundary control systems

which has appeared elsewhere in the literature. See, for example, (Curtain and Salamon, 1986).

Let W,V and H be Hilbert spaces with W and V densely and continuously embedded in H. We

consider boundary control systems of the form




2.1 w(t) = Aw(), t>0

2.2) w(0) = wg
2.3) Tw®=v(®,  t20
(2.4) y® =Cw(t),  t20

where A & L(W,H), the boundary input operator I is an elementin &(W,R™) and the output
operator C is an element in L(V,RP).

We require the assumptions that 1) I is surjective and its null space, () = {@ e W:

I'p =0}, isdense in H, 2) the operator , defined to be the restriction of the operator A to T\ (I),
is a closed operator on H and has non-empty resolvent set and 3) for each T >0, all wy € W, and
v e C}0,T; R™) with T'wy = v(0), there exists a unique w € C([0,T]; W) N C}([0,T]; H) which
depends continuously on w, and v and which satisfies (2.1) - (2.3) for each t € [0, T]. It then
follows (see Hille and Phillips, 1957) that the operator & : Dom (&) ¢ H — H given by Q¢ =
A for @ € Dom(Q)= N\ (T') is the infinitesimal generator of a T semigroup, {I(1): t= 0},
of bounded linear operators on H.

Define the space Z as the dual of Dom(Cl *) < H. Then H is densely and continuously
embedded in Z, {T7(t) : t= 0} can be uniquely extended to a T, semigroup of bounded linear
operators on Z, and the operator € can be uniquely extended to the operator in & (H,Z) given by
(& Q)y) =<0, Cl*\|I>H for oeH, ye Dom(¢™).

For ve R™, since T" is onto, there existsa w € W such that I'w =v. With this w define
Bv = Aw - Uw. It can be shown (see Curtain and Salamon, 1986) that B is a well defined
elementin BLR™,Z) and that for each wyeH and v € L,(0,T; R™) there exists a unique w €

C([0,T]; H) N H! (0,T; Z) which depends continuously on w and v and which satisfies
w(t)=CQw() + Bv(t), t>0
w(0) = w,
in Z. The function w is given by

t
2.5) w() =9 Ow, + J‘ T(t-s) Bv(s)ds, t20
0
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and is referred to as a weak solution to the boundary control system (2.1) - (2.3).
The discrete-time formulation of (2.1) - (2.4) is found by considering piecewise-constant

controls of the form

(2.6) v(=u, telkt, (k+11), k=0,12,.

where T denotes the length of the sampling interval. Let w, = w(kt), k= 0,1,2,... where w()
is the unique weak solution to (2.1) - (2.3) given by (2.5) corresponding to w, € H and input v
given by (2.6). (We note that with piecewise constant input of the form (2.6), the solution w is in
fact a strong solution on each subinterval [kr, (k+1)t].) Recalling that I is a surjection, let
I'te BR™, W) denote any right inverse of I" and for each k =0,1,2,... define
z, € C([kt, (k + 1)t]; H) by z (1) = w(t) - Ty, te [kt, (k + 1)t). Then
zi (1) = w(t) = Aw(t) + By,
= Uz(D) + (A + BDIMu,
= Uz () +ATH,, tekr, (k+1)1l,

z (k)= w -THy, .

Therefore
Wi = ((k+1)7) + Ty
= T ()(w, - T*u) + I: T (s) A Ty ds + Ty,
= T@w,+ (- T@) T+ [} T (AT uds,
or

Wi = Tw + By, k=0,1,.,..

w, € H




T

where T e B(H) and B € B(R™, H) are given by T=9(t) and B=(I- T () T+
| ; " (s)ATtds respectively.

We note that the discrete-time input operator B is well defined and does not depend upon a
particular choice for I'*. Indeed if B, and B, are the input operators which correspond to the
choices I‘;‘ and I‘:‘ then for u &€ R™ we have

(B, -Byu=(- F@)T, ~THu+ J; T (A [CF - TFuds.

But (I‘: - I“z" Ju e N (@) = Dom(Q) and therefore

fﬁ'(s)A(I“; - 1"; Juds = J“J’(s) C{(I‘;-—I‘z* ) uds
0 0

=f

In.

T(@-T)uds = (T'() =DAT -T7)u.

[« 9

S

In addition, if T'* is chosen so that R, (') < . (A), B takes on the particularly simple form B =
(- T (x))I'*. Itis also worth noting that a simple calculation reveals that

B=[37() Bds

in agreement with the standard technique for obtaining the discrete or sampled time formulation of
a continuous time system in either a finite dimensional or bounded input setting.

It is our intention here to apply the approximation theory we developed earlier in (Gibson and
Rosen, 1986) for the design of optimal discrete-time LQG compensators for infinite dimensional
systems with bounded input and output operators. We therefore require the additional assumptions
that 4) T=9(v)e B(V)and 5) R (™) c V. Although not all boundary control systems we
might formulate would satisfy these conditions, as will become evident in Section 4 below, a wide
class of interesting and important systems do. In this case, the control system (2.1) - (2.4) takes

the form



@.7) w.,,=Tw +Buy, k=0,12,..

(2.8) woeV

2.9) ¥, = Cw,, k =0,12,.. .

3. LOG Theory for Infinite Dimensional Discrete-Time Systems and Finite
en Coximafi

The discrete-time linear quadratic control or regulator problem for the boundary control system

(2.1) - (2.3) takes the form

Find u* = {ul)x =0 € £,(0,°0; R™) which minimizes the quadratic performance index
T
J(u) = 2 <ka s W Sy + U Ruk
k=0
where Q € L(V) is self-adjoint and nonnegative, R &€ L(R™) is a symmetric positive definite

mxm matrix and the state w = {wk}:_ o evolves according to the recurrence (2.7), (2.8).

The optimal control is given in closed-loop, linear state feedback form by u, =-Fws,
k=0,1,2,... where F=(R + B*HB)'IB*H T and I1is the minimal nonnegative, self-adjoint

solution (if it exists) to the operator algebraic Riccati equation
@3.1) 1= T*(II - IBR + B*TIB)'B*I)T + Q.

A control u is said to be admissible for the initial data w if the resulting state trajectory Wy =
W (Wo,u), k = 0,1,2,... is such that J(u) <eo . If foreach wye V there exists an admissible
control u, then the Riccati equation (3.1) admits a self-adjoint nonnegative solution IT. If, in

addition, an admissible control drives the state w, to zero, asymptotically as k — oo, then this

*

solution is unique (see (Gibson and Rosen, 1985)). The optimal state trajectory w* = {w: }k -




T T T— T —— T S -y

evolves according to w: = Skw, k = 0,1,2,... where the closed loop state transition operator
S e &H(V)is givenby S =T - BE. If Q is coercive, then S has spectral radius less than one and is

uniformly exponentially stable. From the finite dimensionality of the control space we obtain

% *
(3.2) 0= WSy, k=012,

m
where f = (fl,fz,...,fm)T € X Visreferred to as the optimal functional feedback control gains.
j=1

When only a finite dimensional measurement y = {y, } :°__ . of the infinite dimensional state w

is available (i.e. equation (2.9)) a state estimator or observer is required. For a given input

sequence u and corresponding output sequence y the optimal LQG estimator is given by

(3.3) Wi, =TW +Bu + F {y, -CW]}, k=0,12,.
(3.4) Wo €V

where the optimal estimator or observer gains F ¢ L(RP,V) are given by f’ =T fI C*(f{ +
CIl C*)'1 with IT € & (V) the minimal self-adjoint, nonnegative solution (if one exists) to the
operator algebraic Riccati equation

-~ -~

(3.5) M=T(T - I C*R+ CTI C*ICTT* + Q.

The operator a € £(V) is assumed to be self-adjoint, nonnegative and the pxp matrix fl is

assumed to be symmetric, positive definite. In a stochastic setting, the operator 6 and the matrix
ﬁ are assumed to be respectively the covariance operator and matrix for uncorrelated, zero-mean,
stationary, Gaussian white noise processes which corrupt the state and measurement. In this case,
if E) is trace class, (3.3), (3.4) is the infinite dimensional analog of the discrete-time Kalman-Bucy
filter. In a strictly deterministic setting, 6 and IA{ are assumed to be determined via engineering

design criteria such as stability margins, robustness of the closed-loop system, etc.



Sufficient conditions for existence and uniqueness of self-adjoint, nonnegative solutions fI to
the algebraic Riccati equation (3.5) are of course analogous to the ones given earlier for the control
problem (i.e. with regard to the usual duality which exists between the optimal LQG control and
estimator problems).

Since F € (RP,V), it has a representation of the form

A A

Fy=fTy , yeRP

a p
where f =(f,f,,.., fp)T € X V isreferred to as the optimal functional observer gains.
=1

When the optimal control law is used together with the optimal observer, that is
(3.6) U =FW% , k=012,

where W™ = {Cv:}:°= , is given by (3.3), (3.4) with input u = 8* and corresponding output

y = y*, we obtain the optimal LQG compensator. The resulting closed-loop system is given by
= gk =
W= AW, k=0,12,.

where W, = (w,, Gv: Y with {Wk}:= o the state trajectory which results from the input (3.6)

and A € L(VxYV) is given by




If we define e, to be the difference between w, and Gv: ;€ = Wy - Gv;: »we finde, = §ke0 ,
k=0,1,2,... where § =T- %C. It can be shown that if S and § are uniformly exponentially
stable, so too is A and its spectrum, o(A), is given by o(48) = o(S)U o(g ).

For each N = 1,2,... let Vyydenote a finite dimensional subspace of V and let Py be a
bounded linear mapping from V onto Vy; (for example, the orthogonal projection with respect to
either the V or H inner product). Let Ty, Q. aN € L(Vy), Bye BR™, VY and Cy €
L (V,RP) and set

* 1p*

Fy= R+B T\By'B I\Ty
and

F =Ty TICR (R + CylL CR)?

where ITy and ITy are the minimal, self-adjoint, nonnegative solutions (once again if they exist) to

the finite dimensional operator algebraic Riccati equations

(3.7 Iy =TTy - THByR + B;HNBN)'I B;HN)TN +Qy
and
(3.8) Ty = Ty( Ty - Ty} R + Cylly CHYICy Ty )TE+ Qy

. . . - . . A Aok
respectively. The approximating optimal compensator is given by u ; o -FNwN kk =0,1,2,..

where w; = [w; . };" 0 is determined according to the approximating observer

s



w* = Ty w* +Byu* + F{y* -C,w* }, k=0,12...
Nx+1 N'nx “Ninx N{yN’k N N,k}

* - A

WN 0 = PN WO € VN .

% . E ]
The measurements y, are given by Yo 1= Cwyy » k=0,1,2,... where

’

WNk+1 = TWN,k - Bu; - k=0,1,2,..

’

WN,O = WO .

The resulting closed-loop system is given by Wy, = ,6: ‘UIN'O, k=0,1,2,... where

Wy = Wy W OT and By e B (VxVy) s given by

T -BF};

3.9 Ay =1
F.C Ty-ByFy- BC

Let Sy =Ty - ByFy and §N =Ty- f‘NCN and assume that the spaces Vy are V-approximating
in the sense that Py — I strongly on V as N — eo. Assume further that
TPy - T,T:Py = T%, QuPy —Qand QuPy — Q strongly on V and that
By — Band CPy — Cinnormas N — co. If the pairs (Ty, By) and (T} ,C ) are
uniformly exponentially stabilizable and the pairs (Ty, Q) and (T ; . QN) are detectable (see
Kwakernaak and Sivan, 1972) then there exist unique, self-adjoint, nonnegative solutions Iy and
fIN to the algebraic Riccati equations (3.1) and (3.5). If ITy and fIN are bounded from above
uniformly in N, then IIyPy and fINPN converge weakly to IT and fI respectively as N — oo .
If, in addition, Sy, and §N are uniformly exponentially stable, uniformly with respect to N,
then II Py and fINPN converge strongly. Weak convergence of IT\Py to Il yields strong
convergence of FyPy toF and SyPy to S. If TIyPy converges strongly then FyPy — F in

norm. Weak convergence of IIyPy to II yields weak convergence of Fyto Fand Sy Py to

10




§. When II:INPN - fI strongly, then IEN - I’5 in norm and §NPN - § strongly in V as

N — co. Finally, if we let ®y denote the mapping of VXV onto VXV given by ®y(w,, w,) =
(w,;, Pyw,) then II\Py — IT weakly or strongly is sufficient to conclude that 8 ® — &
weakly or strongly depending only upon whether f'INPN - fI weakly or strongly as N — o,
Under appropriate additional hypotheses on the spectral properties of the open-loop system, the
nature of the approximation spaces V) and the mappings Py, it is possible to obtain a result
regarding the norm convergence of 4, %y to 4. Norm convergence of the closed-loop state
transition operators is sufficient to conclude that uniform exponential stability of 4 implies uniform
exponential stability of 8y for all N sufficiently large (see Gibson and Rosen 1986).

In practice, the finite dimensional approximating subspaces V) are often constructed using any
one of a number of common finite element bases, e.g. polynomial and hermite spline functions,
mode shapes, orthogonal polynomials, etc. For some of the discrete-time boundary control
systems of particular interest to us here, the approximations to T and B, Ty and By, are typically
obtained by approximating the continuous time semigroup, {J (t) : t 2 0}, by a semigroup of
bounded linear operators on Vy, {3 \():t20}. (In actual fact it is the infinitesimal generator &
of the semigroup { " (t): t 2 0} which is approximated by a bounded linear operator &y, on Vy with
{T n(®: 20} then being defined by T () =exp (Upt), t20). With Tyy= T (t) and By=(I -
‘J’N('c))PNF"' + f Z ‘ZTN(s)PNAl""ds, the necessary conditions for convergence are argued using the
well known Trotter-Kato semigroup approximation result (see (Kato, 1966)). The approximations
to Q, (A) and C, Qy aN and Cy respectively, are typically taken to be Qg =P\Q, E)N = PNQ
and
Cy=CPy.

N

n i
Let {(ij} _ Nl denote a basis for Vyy and set ON = (@¥ ,q)’z‘I e (pgN )Te x Vy.
)= j=1

Adopting the convention that [L] denotes the matrix representation with respect to the basis
{(p;q} ?*:1 for a linear operator L with domain and/or range in Vy, we find that

[Fy] = R + (BT ©N [Byl)(ByiT ©N[Ty] and [Fy] = [Ty] OVCyIT(R + [Cy]

® N[C\IT)! where ©N and @N are the unique, symmetric, nonnegative solutions to the
ny X ny matrix algebraic Riccati equations

11



(3.10) ON = [T\]T (ON - ON[BLI(R + [B\]T © N[B! [B\IT ON)[Ty]
+ MN[Qy]

and

3.11) Oy = [TyI( ON - BNICLIT(R + [ClON[CI N CIOMTyIT
+ QUMM

The matrix MV is the ny % ny Gramian matrix <®N, (@N)T>_ .

If we write wy K (@NT Wy ,x With W; € RnN, we obtain u; - FN] Wy g s

k=0,1,2,... with

’ ’

A
*

_ A * A* A A* ) A - _
Moo= INVWE  + DByl ut +[Fly, | - [COI WL ), k=012,..

’

W; 0= MM T <N, wp>,, .

m
The approximating optimal functional feedback control gains, fN = (ff, ..., fHT & x vy
j=1
are given by fN = [F J(MN)1®N and the approximating optimal functional observer gains

NoN N BT o v by f = BTN . IFTIP, —s ITweakly (strongly)
1> 120 1P 2 N DY N. . NEN y gly
J:

then ff — fj,i=12,.,m weakly (strongly) in V. If II\ Py — IT weakly (strongly) then
f*f — f;,i=1,2,..,p weakly (strongly) in V. If the injectiqn V c H is compact, then in either

case we have f}" -»f,i=12,.,mand f? - f..i=12,..,p strongly in H.

12




4. Examples and Numerical Result

We consider the one dimensional heat equation

ow 2 o*w
4.1 —_—(t,X)= a — tx), O0<x<1t>0,

ot ox

where a € R1, with a homogeneous Dirichlet boundary condition at x =0,
4.2) w(t,0) =0, t>0,
and either Neumann,
@3 X = vo,t>0,
ox
or Dirichlet,
4.4) w(t, 1) = v(t), t>0,

boundary control or input at x = 1 where v € L,(0, «). For output we take a temperature

measurement

4.5) yoO=w0), t20,

at some fixed point { € (0, 1). Initial conditions for these systems are assumed to be of the form
(4.6) w(0, x) = w, (x), 0<x<1

where wyeL, (0, 1).

Although the two control systems above appear to be similar, they are, in fact, quite different and

must be treated separately. We begin with the more straight forward of the two - the case of

13



Neumann boundary control. Let H=1L,(0,1), V=H} (0,1) = {9 e H}(0, 1) : ¢ (0) =0} and

W =H2(0, 1) N H, (0, 1). With H endowed with the usual L, inner product, V with the inner
product <@, Y >y = J (1, D¢ Dy and W with the inner product <@,y >y, = | ; D2¢p D2y we have the
continuous and dense embeddings W c VcHc V' c W'. Define A € Z(W, H), I"e Z(W, R!) by
A ¢ =a?2 D2, I'¢ = D@(1) and Co = ¢({) respectively. With these definitions it is immediately clear
that the boundary control system (4.1) - (4.3), (4.5), (4.6) is of the general form (2.1) - (2.4). The
operator ¢: Dom (Q) c H—H is given by Q¢ = a2 D2p for ¢ € {¢ € H2(0, 1): ¢(0) = Dg(1)) =
0}. Itis densely defined, negative definite, self-adjoint and it is the infintesimal generator of a
uniformly exponentially stable analytic sernigroup. {9 (H): t= 0} of bounded, self-adjoint linear
operators on H. Inaddition, {97 (t): t=0} is also a uniformly exponentially stable, analytic
semigroup of bounded, self-adjoint operators on V with generator & given by Q¢ = Qg for o€ {o
e H3 (0, 1): ¢(0) =D@(1) =D2p(0) = 0}. Choosing I't € B(R!, W) as (I'Fu)(x) = xu for x € [0,
1], we have R(IT'H) <V, R(I'") < N(A) and that conditions 1) -5) given in Section 2 are
satisfied. For the optimal control and estimator problems, we take Q =ql, 'Q = a LR=rand R=t

where 1 is the identity operator on V, q, a 20andr, I >0. The uniform exponential stability of the
semigroup {9 (t): t =20} on V implies that the algebraic Riccati equations (3.1) and (3.5) admit
unique, nonnegative self-adjoint solutions I'T and o respectively. The optimal control (3.2) takes the

form
1

4.7) u = - J' DfDw,, k= 0,12,
0

where the optimal functional feedback control gain f along with the optimal functional observer gain
£ are elements in H} (0,1).

We construct an approximation scheme using a linear spline based Ritz-Galerkin approach. For
each N=1,2,... let {(p;q}?: 0 denote the usual linear spline or "hat" functions defined on the
interval [0,1] with respect to the uniform mesh {0, 1/N, 2/N,...,1}. We discard the element centered
atx =0, (py, set Vy = {(p?l} f‘= , and choose Py to be the orthogonal projection of V onto Vyy

with respect to the V inner product. It is clear that Vyis an N dimensional subspace of V.

14




T~

For ¢ ¢ Dom (Q), IC¢ly = a2ly = a2iply and therefore 0 & p(Q) and &1 H » Dom(Q)
satisfies ICl'l(plV < a'2Iq>IH for g e H. Wedefine CQy : Vy — Vy as the inverse of the operator
Q;ql = PNCA‘l restricted to V). That the operator Uy is well defined follows from the fact that
-1 - 2 .. -
< GlN(pN, PNy = -2 2I(pNIH for @y € Vy and that it is self-adjoint from <CQy\QN.Yp>y =

—a 2<C\Pp U NV For @y € Vyyand yy = Uy, the estimate

-1
< UNPNOPNPY = <UD Wy = -2 \yNIi
< -a2|Cl‘1\|!N|i,s -a? [PQ! \lefr = -a?l Cl; lei,

2
=-a | gply

implies that Qy is the infinitesimal generator of a Ty semigroup { I (1) : t 2 0} of bounded,
self-adjoint linear operators on V) satisfying 177 \(t)l < ea%t 1>0.
Let 9); denote the interpolation operator from V onto V. Then for ¢ € W, elementary

approximation properties of linear interpolatory spline functions (see (Schultz, 1971)) imply

Iy - Doly, <19y, - Doly, sﬁl- ID gl
T

and therefore, since W is dense in V, that Py, — I strongly on V as N— e . Also, it follows that (’.l;
= PyQ!- ! strongly on Vas N— eo . If we define Ty = T y(7), then the Trotter-Kato
approximation theorem (see (Pazy, 1983)) yields TPy — T (and therefore of course that T;}PN -
T*) strongly on V as N— eo where T = T = T (7).
Since R(IT) c Vy» we define the approximating input operators By by By = (I - U’N(‘E))l"’ and
set Qu =4I, aN =qland Cy =C. The strong convergence of Py to the identity and TPy to T
together with the finite dimensionality of the domain of B and the range of C are sufficient to
conclude that QuPy — Q, aNPN - 6 strongly on V and that By; — B and CyPy; — C in norm as

N — oo,

The uniform exponential stability of the semigroups { 9" y(t) : t2= 0} implies
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(4.8) I Iy = (T My <t k=0,12,..

withr=e 2T < 1. Consequently the pairs (T, By) and (Ty, C;) are uniformly exponentially
stabilizable and the pairs (Ty,Qy) and (T}, aN) are detectable. it follows therefore that there exist
unique self-adjoint, nonnegative solutions ITy and fIN to the finite dimensional algebraic Riccati
equations (3.7) and (3.8) respectively. The uniform exponential bound (4.8) with r < 1 on the
approximating open-loop state transition operators Ty imples that the zero control yields a uniform
upper bound for Il and fIN and the uniform exponential stability of Sy, = Ty - ByFyy and §N =Ty
- %NCN . We can conclude therefore that I Py and II:INPN converge strongly in V to Il and fIN
respectively and that Fy Py and ﬁN converge to F and ﬁ in norm as N — oo, The approximating
optimal functional feedback control and observer gains, fy; and EN, converge respectively to f and E
in the H! norm as N — oo,

In implementing the scheme outlined above, eigenvector decomposition of the associated
Hamiltonian matrix was used to solve the matrix algebraic Riccati equations (3.10) and (3.11) (see
Pappas, et. al., 1980). Matrix exponentials, where required, were also computed using
eigenvalue/eigenvector decomposition. All calculations were carried out via codes written in Fortran

and run on an IBMPC AT. We seta?=.1,q= a =r=r=10, £= V2 /2 and T=.01 and obtained
the functional gains plotted in Figs. 4.1 and 4.2 below. We plot f;and fN as well as Dfy; and DgN
so as to exhibit the H! convergence and since it is Df (or Dfy,) which actually appears as the feedback
kernel in the optimal control law (4.7).

We also simulated the operation of the closed-loop system with an approximating compensator.
Using a 20 mode model for the infinite dimensional system and N =12, we computed the closed-
loop spectrum of the approximating compensator (i.e. the eigenvalues of the operator 4 given by
(3.9) with N = 12). These eigenvalues along with the first 20 open-loop eigenvalues (i.e. the first
20 eigenvalues of the operator T = 97(t)) and the approximating closed-loop control and observer
eigenvalues are tabulated in Table 4.1 below. Table 4.1 reveals that the last seven open-loop
eigenvalues remain essentially unchanged in the closed-loop system-i.e. these modes are neither

controlled nor observed by the finite dimensional compensator. Also, as one would expect, o(,&N)
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consists essentially of the union of o(Sy), o §N) and the eigenvalues corresponding to the
uncontrolled/unobserved modes of the open-loop system.

It is worth noting that the scheme we have outlined above for the Neumann boundary control
problem is the same scheme that one would ordinarily use if the problem were formulated in the space
H - i.e. if the output operator C was bounded on L»(0,1) (see Gibson and Rosen, 1986). This is
possible primarily because the space V = H}‘(O,l) is the natural energy space for the underlying
homogeneous or open-loop system. Consequently, the inherent self-adjointness and coercivity in the
problem is preserved when it is formulated in the stronger space. In the case of Dirichlet boundary
control, the situation is quite different.

For the Dirichlet boundary control system (4.1), (4.2), (4.4) - (4.6), we choose the spaces H, V

and W and their corresponding inner products to be the same as they were in the Neumann case.

The operators A € B(W,H) and C &€ B(V,R?) also remain unchanged, however now we have

I e B(W,RY) given by T'¢ = ¢(1). It then follows that the operator & : Dom(®) « H — H is given
by Q¢ = a?D2g for ¢ £ H%(0,1) N H; (0,1). Itis well known that € is densely defined, negative
definite and self-adjoint and that it is the infinitesimal generator of the uniformly exponentially stable
analytic semigroup {J (t) : t= 0} of bounded, self-adjoint linear operators on H. However this

time the operators J (t) for t > 0 are neither self-adjoint nor a semigroup on V. Indeed, since

RET W) H; (0,1) for all t > 0 and since H:(O,l) is a closed proper subspace of Hrl_ O,1), T is
not strongly continuous in the V-norm at t = 0. (The fact that our general framework requires

IT*=1and R(I*) <V precludes our choosing V to be HIO(O,I).) On the other hand,

{T(t) : t= 0} an analytic semigroup implies (see Pazy, 1983) that there exists a constant U > 0 for
which 1A T ()l < ut‘l for t > 0. Consequently, if we define T = J7(1), then it follows that

T & &(V) and moreover, that

|Tk<p|f, = - <A T k), T (kD)> <1 AT kD)ol 1T kD)ol

2 2
-a kt -akt

He pe
< I(pl2 < I(pl2
kt i kt v

fork=1,2,... and ¢ € V. We have therefore
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@9) Ik, = ThHk, <MK, k=0,12,..

where M>0andr<1.
We again choose I't € B(R!, W) as (Iu)(x) = xu for x € [0,1]. Then R(T) cn(A) and we
have reformulated the boundary control system (4.1), (4.2), (4.4) - (4.6) in the general form of (2.1)
- (2.4) and conditions 1) - 5) are satisfied.

We formulate the optimal control problem with the performance index

J(u) = z q<wk,wk>H+ru§
k=0

where q =2 0 and r > 0. That is, we take Q to be the bounded, self-adjoint nonnegative operator on
Hi‘(O,l) given by (Qo)(x) =q f ’6 | 1y ¢(z)dzdy and R to be r. For the estimator problem we set
Q=qlandR=r with §> 0 and £ > O.

The uniform exponential bound (4.9 ) implies the existence of unique, nonnegative, self-adjoint
solutions IT and ﬁ to the algebraic Riccati equations (3.1) and (3.5). The optimal control is again of
the form (4.7) with the optimal functional gains fand f in H,

The fact that {J7(t) : t= 0} is not a semigroup on V precludes the use of a semigroup - theoretic
approach to approximation. We therefore employ modal subspaces and approximate the open-loop
state transition operator T directly as a bounded linear operator on V.

For each N = 1,2,... let Vy = span {(pj} ;‘- 0 where for x € [0,1], @y(x) =x and (pj(x) = sinjnx,

j=12,.,N. Letpy denote the orthogonal projection of H = L,(0,1) onto span {(pj};‘l==1

and let Py denote the orthogonal projection of V onto Vy. Using the fact that V = Hé(O,l) @ @q. it
is not difficult to see that Py = @(1)@, + py(¢ — @(1)@,) for ¢ € V and hence, via elementary
properties of Fourier series (see Tolstov, 1962), that I(Py - Dely = I(py - D(@ — ¢(1)py)ly — 0

as N — oo foreach@eV.
N .
If for y = 2 \|r'N o€ Vi wedefine Ty & LV by
0

< 21
Ty WN=PNTYN =P\ T (Dyy = z{ —
Fl J

2.2
0 j -a j wl«
YNt te P

18




T T T pear——"— -~

T

then T} = PNT, ITE I = (T ¥y < MrK, k=0,1,2,... with M >0 and r < 1 independent of N,

I(TPy - Doly < I(PYTPy - PyDoly + I(Py - DToly,
SMrl(Py - Doly +1(Py - DToly, = 0

as N — o for @ € V. Similarly, T;IPN > T strongly on V as N — oo,
The approximating input, output and state penalization operators By, Cy, Qy and Qy take the
form

2-1y . R

jn )

’

N

+
By = (- TYl'u =qu+ 21:
F

Cy =C,Qy =qPyQ and 6N = I Reasoning as we did in the Neumann case, the approximating
algebraic Riccati equations (3.7) and (3.8) admit unique, nonnegative, self-adjoint solutions IIy and
fIN respectively, IIyPy— II and ﬁNPN — fI strongly on V and FyPy — F and IEN - ﬁ in norm
as N — o= . The approximating functional feedback control and observer gains fy; and EN converge

to f and f respectively, strongly in Hl as N — oo,

Witha2=1.0,q=4=r=1.0,7 = 5.0, £=V2/2and 1 =.01 and the scheme outlined above we
obtained the approximating optimal functional feedback control and observer gains plotted in Figs.
4.3 and 4.4 below. The first 12 open-loop and the approximating closed-loop control and observer
eigenvalues for N = 12 are tabulated in Table 4.2.

Table 4.2 reveals an interlacing of the closed-loop control and open-loop eigenvalues. That is,
the closed-loop control eigenvalues (i.e. the elements in the spectrum of S) are alternately more and
less stable than the corresponding open-loop eigenvalues. We also have observed this phenomenon
in other numerical studies we are carrying out involving LQG boundary control for flexible
structures. In additon, in the Dirichlet boundary control system discussed above, if Q is chosen as
the identity operator on V = Hi(O,l), virtually all of the closed-loop control eigenvalues are less stable
than the corresponding open-loop eigenvalues. It is clear that this non-standard behavior results from
the presence of the one dimensional subspace represented by R. (). Indeed, the behavior of the

closed-loop spectrum in the case of Neumann boundary control is as would be expected. We feel that
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what we are seeing can most likely be explained via infinite dimensional analogs of existing results
relating the asymptotic properties of the closed-loop spectrum of a linear regulator and the zeros of

the corresponding open-loop transfer function (see Kwakernaak and Sivan, 1972 and Harvey and
Stein, 1978). However, as of yet, we have been unable to establish this conjecture satisfactorily
and we consider it to be beyond the scope of this paper, which is primarily concerned with

approximation. We leave it as an interesting open question worthy of further investigation.

5. Concluding Remarks

We have developed a framework for the finite dimensional approximation of optimal discrete-time
LQG compensators for distributed parameter systems with boundary input and unbounded
measurement. Our theory applies to the class of boundary control problems which can be formulated
in a state space in which both the discrete-time input and output operators are continuous. We have
used a functional analytic treatment to develop a convergence theory and have demonstrated the

feasibility of our approach via examples involving either the Neumann or Dirichlet boundary control of
a one dimensional heat equation with point measurement of temperature. We have shown that while
both problems outwardly appear to be quite similar, they in fact require very different approaches to
approximation. Also in the Dirichlet case the observed behavior of the resulting closed-loop spectrum
is, in some ways unexpected and its explanation remains open.

Finally, we have been looking at the application of our schemes to LQG problems for flexible
structures with boundary inputs and unbounded measurement and systems with control and/or
observations delays. We have been considering vibration suppression for cantilevered beams via
shear or moment inputs at the free end and pointwise observation of strain or acceleration. These

studies are currently underway with the results to be reported elsewhere.

Acknowledgment: The authors would like to gratefully acknowledge Mr. Milton Lie of the
Department of Mathematics at the University of Southern California for his assistance in carrying out

the computations reported on in this paper.
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Open-Loop 0'(/6 12) o(S 12) o(S 12)
1 9975 9968 .9968
2 9780 9780 , 9778
j 9769 9768
3 .9402 9408 9387
9371 9371
] 4 8861 8872
.8778 .8775 8798
; 5 .8188 8194
' 7982 7985 7998
' 6 7419 7414
7026 7019 7030
7 .6590 6573
.5960 .5921 5946
) 8 .5740 5718
s 4891 4769 4804
9 .4901 4875
4433 4412
10 4104 4041
3675 3675 3682
11 3368 .3341
2772 2763 2768
) 12 2711 2705
2145 2129 2133
? 13 2139 2134
1811 .1811 .1816
14 .1655 .1663
15 .1255 .1260
16 0934 0933
17 0681 0677
18 0482 .0483
19 0341 0340
20 0235 0236

Neumann boundary control; simulation results

Table 4.1
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Open-Loop o(519) o(S172)
1 90601806 90569591 78573771
2 .67382545 .68243047 57981918
3 41136911 40961171 40082268
4 20615299 20758391 20936323
5 08480497 08447005 08636884
6 .02863695 .02873534 02892353
7 .00793790 .00791793 00792193
8 .00180617 .00180978 00178763
9 .00033753 .00033682 00033414
10 .00005172 .00005179 .00005162
11 .00000651 .00000650 .00000654
12 00000067 .00000067 00000068
13 .00000000 .00000000

Dirichlet boundary control; open and closed-loop spectrum

Table 4.2
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